Effects of Different Heterogeneous Nutrient Environments on the Growth and Activities of Enzymes in the Roots of Fokienia hodginsii Families

Plants (Basel). 2023 Dec 13;12(24):4152. doi: 10.3390/plants12244152.

Abstract

Currently, research on the F. hodginsii asexual lineage primarily focuses on the screening of growth traits and the control of single fertilizer applications. The effects of the heterogeneity of soil nutrients on root growth and activity have not been studied in detail. Therefore, we propose forest management measures to improve the foraging ability of forest trees in conjunction with stand productivity. In this experiment, annual containerized seedlings of 10 free-pollinated F. hodginsii lines from a primary asexual seed orchard were used as test subjects, and three heterogeneous nutrient environments of nitrogen (N), phosphorus (P), and potassium (K) were constructed. In contrast, homogeneous nutrient environments were used as the control to carry out potting experiments, to study the growth of F. hodginsii lines and the differences in the activities of root enzymes under the three heterogeneous nutrient environments, and to carry out the comprehensive evaluation using the principal component and cluster analysis method. The results were as follows: (1) The seedling height of F. hodginsii family lines under a homogeneous nutrient environment was significantly higher than that of all heterogeneous nutrient environments; the diameter of the ground was the highest under N heterogeneous nutrient environment and significantly higher than that of all the other nutrient environments; the biomass of the root system was the highest under P heterogeneous nutrient environment, which was significantly higher than that of homogeneous nutrient environment and K heterogeneous nutrient environment. The catalase (CAT) activity of F. hodginsii roots was higher than that of homogeneous nutrients in all heterogeneous nutrient environments but not significant, and the superoxide dismutase (SOD) activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments in N and P heterogeneous nutrient environments. SOD activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments under N, and P. peroxidase (POD) activity in the F. hodginsii root system was the highest under the P heterogeneous nutrient environment, which was significantly higher than that of the other nutrient environments. Unlike the activities of the enzymes, the content of malondialdehyde (MDA) in the roots of F. hodginsii was higher in the heterogeneous environment than in all the other nutrient environments. (2) Under N and P heterogeneous nutrient environments, lines 552 and 590 had higher seedling height, ground diameter, and root enzyme activity, while root biomass was highest in line 544; and under K heterogeneous nutrient environments, line 591 had higher seedling height, ground diameter, and root enzyme activity while root biomass was highest in line 551. In contrast to the patterns of seedling height, accumulation of root biomass and activities of root enzymes, family No. 590 had the highest ground diameter of all the F. hodginsii families under the heterogeneous nutrient environments. Family No. 547 had the highest MDA content. In conclusion, it can be seen that N heterogeneous and homogeneous nutrient environments can significantly increase the seedling height and diameter of F. hodginsii compared with P and K heterogeneous nutrient environments, and N and P heterogeneous nutrient environments can also increase the root biomass, root enzyme activities and significantly reduce the MDA content of F. hodginsii. According to the principal component analysis and cluster analysis, it can be seen that among the 10 F. hodginsii family lines, family lines 590 and 552 have higher evaluation in growth, root biomass accumulation, and enzyme activity.

Keywords: Fokienia hodginsii; antioxidant enzyme activity; family; grow; heterogeneous nutrients.