Research Progress of Metal Anticancer Drugs

Pharmaceutics. 2023 Dec 11;15(12):2750. doi: 10.3390/pharmaceutics15122750.

Abstract

Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.

Keywords: cancer; gold anticancer drugs; iridium anticancer drugs; platinum anticancer drugs; ruthenium anticancer drugs.

Publication types

  • Review

Grants and funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21864020, 82160652), the Natural Science Foundation of Inner Mongolia (Grant No. 2019MS02014 and 2018MS02012), the “Young Science and Technology Talents Program” (Leading Person) in Inner Mongolia Autonomous Region Colleges and Universities (Grant No. NJYT-19-A04), the Fundamental Research Funds for the Inner Mongolia Normal University, China, (Grant No. 2022JBZD013), the Key Project of Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2023ZD21), and the Science and Technology Planning Project of Inner Mongolia Autonomous Region (No. 2021GG0367). This work was supported by the National Natural Science Foundation of China (22164016), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT23034), the Inner Mongolia Autonomous Region Science and Technology Plan (2022YFSH0040).