Synthesis of a Magnetic Nanostructured Composite Sorbent Only from Waste Materials

Materials (Basel). 2023 Dec 18;16(24):7696. doi: 10.3390/ma16247696.

Abstract

Water pollution is a big problem for the environment, and thus depollution, especially by adsorption processes, has garnered a lot of interest in research over the last decades. Since sorbents would be used in large quantities, ideally, they should be cheaply prepared in scalable reactions from waste materials or renewable sources and be reusable. Herein, we describe a novel preparation of a range of magnetic sorbents only from waste materials (sawdust and iron mud) and their performance in the adsorption of several dyes (methylene blue, crystal violet, fast green FCF, and congo red). The preparation is performed in a hydrothermal process and is thus easily scalable and requires little sophisticated equipment. The magnetic nanostructured materials were analyzed using FTIR, VSM, SEM/EDX, XRD, and XPS. For crystal violet as a pollutant, more in-depth adsorption studies were performed. It was found that the best-performing magnetic sorbent had a maximum sorption capacity of 97.9 mg/g for crystal violet (methylene blue: 149.8 mg/g, fast green FCF: 52.2 mg/g, congo red: 10.5 mg/g), could be reused several times without drastic changes in sorption behavior, and was easily separable from the solution by simply applying a magnet. It is thus envisioned to be used for depollution in industrial/environmental applications, especially for cationic dyes.

Keywords: adsorption; dyes; iron mud; magnetic nanomaterials; sawdust.