Experimental Study on the Roundness of Deep Holes in 7075 Aluminum Alloy Parts by Two-Dimensional Ultrasonic Elliptical Vibration Boring

Micromachines (Basel). 2023 Nov 30;14(12):2185. doi: 10.3390/mi14122185.

Abstract

The 7075 aluminum alloy deep hole pipe finds extensive applications in the aerospace industry due to its remarkable attributes, such as high strength, exceptional wear resistance, and favorable mechanical properties. However, traditional boring processes for 7075 aluminum alloy deep hole pipes tend to generate elevated cutting forces, potentially leading to deformation issues in these deep holes. In response to these challenges, this study introduces a novel approach involving the use of a two-dimensional ultrasonic elliptical vibration tool. This tool features a single excitation asymmetric structure and aims to enhance the deep hole machining process in 7075 aluminum alloy. The research methodology involved several key steps. First, theoretical analysis and simulation were performed to study the motion trajectory of the cutting edge of the tool. Second, practical experiments were conducted comparing two-dimensional ultrasonic elliptical vibration boring with conventional boring for 7075 aluminum alloy deep hole pipes. The results demonstrate that, in contrast to conventional boring, two-dimensional ultrasonic vibration boring could achieve a maximum reduction of 54.1% and an average reduction of 50.4% in the roundness value of the deep holes. The impact of machining parameters on deep hole roundness is assessed through experimental analysis, leading to the determination of optimal processing parameters. In summary, this experimental research has a certain reference significance for the application of 7075 aluminum alloy deep hole parts in the aerospace field.

Keywords: 7075 aluminum alloy; deep hole pipes; deep hole precision machining; surface roundness; ultrasonic elliptical bore boring.