Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs

Animals (Basel). 2023 Dec 5;13(24):3746. doi: 10.3390/ani13243746.

Abstract

Preselected variants associated with the trait of interest from genome-wide association studies (GWASs) are available to improve genomic prediction in pigs. The objectives of this study were to use preselected variants from a large GWAS meta-analysis to assess the impact of single-nucleotide polymorphism (SNP) preselection strategies on genome prediction of growth and carcass traits in pigs. We genotyped 1018 Large White pigs using medium (50k) SNP arrays and then imputed SNPs to sequence level by utilizing a reference panel of 1602 whole-genome sequencing samples. We tested the effects of different proportions of selected top SNPs across different SNP preselection strategies on genomic prediction. Finally, we compared the prediction accuracies by employing genomic best linear unbiased prediction (GBLUP), genomic feature BLUP and three weighted GBLUP models. SNP preselection strategies showed an average improvement in accuracy ranging from 0.3 to 2% in comparison to the SNP chip data. The accuracy of genomic prediction exhibited a pattern of initial increase followed by decrease, or continuous decrease across various SNP preselection strategies, as the proportion of selected top SNPs increased. The highest level of prediction accuracy was observed when utilizing 1 or 5% of top SNPs. Compared with the GBLUP model, the utilization of estimated marker effects from a GWAS meta-analysis as SNP weights in the BLUP|GA model improved the accuracy of genomic prediction in different SNP preselection strategies. The new SNP preselection strategies gained from this study bring opportunities for genomic prediction in limited-size populations in pigs.

Keywords: genomic prediction; growth and carcass traits; large-scale genome-wide association studies meta-analysis; pig; preselected variants.