Role of Exchange Cations and Layer Charge on the Dynamics of Confined Water

J Phys Chem A. 2024 Jan 11;128(1):261-270. doi: 10.1021/acs.jpca.3c05649. Epub 2023 Dec 22.

Abstract

Describing the dynamic behavior of water confined in clay minerals is a fascinating challenge and crucial in many research areas, ranging from materials science and geotechnical engineering to environmental sustainability. Water is the most abundant resource on Earth, and the high reactivity of naturally occurring hydrous clay minerals used since prehistoric times for a variety of applications means that water-clay interaction is a ubiquitous phenomenon in nature. We have attempted to experimentally distinguish the rotational dynamics and translational diffusion of two distinct populations of interlayer water, confined and ultraconfined, in the sodium (Na) forms of two smectite clay minerals, montmorillonite (Mt) and hectorite (Ht). Samples hydrated at a pseudo one-layer hydration (1LH) state under ambient conditions were studied with quasi-elastic neutron scattering (QENS) between 150 and 300 K. Using a simplified revised jump-diffusion and rotation-diffusion model (srJRM), we observed that while interlayer water near the ditrigonal cavity in Ht forms strong H-bonds to both adjacent surface O and structural OH, H-bonding of other more prevalent interlayer water with the surface O is weaker compared to Mt, inducing a higher temperature for dynamical changes of confined water. Given the lower layer charge and faster dynamics observed for Ht compared to Mt, we consider this strong evidence confirming the influence of the interlayer cation and surfaces on confined water dynamics.