Effect of mechanical forces on the behavior of osteoblasts: a systematic review of in vitro studies

Dent Med Probl. 2023 Oct-Dec;60(4):673-686. doi: 10.17219/dmp/151639.

Abstract

Mechanical loading can play a critical role in bone modeling/remodeling through osteoblasts, with several factors being involved in this process.The present study aims to systematically review the effect of mechanical stimulation on human osteoblast cell lineage combined with other variables.The PubMed and Scopus databases were electronically searched for studies analyzing the effect of compression and tension on human osteoblasts at different differentiation stages. Studies that used carcinogenic osteoblasts were excluded. In addition, studies that did not analyze the osteogenic differentiation or proliferation of cells were excluded. The risk of bias of the studies was evaluated using the modified CONSORT (Consolidated Standards of Reporting Trials) checklist. a total of 20 studies were included. The cells were subjected to tension and compression in 5 and 15 studies, respectively. The application of uniaxial and cyclic strain increased the proliferation of osteoblasts. The same increased pattern could be observed for the osteogenesis of the cells. The impact of the tensile force on the expression of the osteoclastic markers differed based on the loading characteristics. On the other side, the impact of compression on the proliferation of osteoblasts varied according to the magnitude and duration of the force. Besides, different patterns of alternations were observed among the osteogenic markers in response to compression. Meanwhile, compression increased the expression of the osteoclastic markers. It has been shown that the response of the markers related to bone formation or resorption can be altered based on the differentiation stage of the cells, the cell culture system, and the magnitude and duration of the force.

Keywords: compression; differentiation; osteoblast; proliferation; tension.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Cell Differentiation
  • Humans
  • Osteoblasts* / metabolism
  • Osteogenesis* / physiology
  • Stress, Mechanical