Scalable Precursor-Assisted Synthesis of a High Voltage LiNiyCo1-yPO4 Cathode for Li-Ion Batteries

Nanomaterials (Basel). 2023 Dec 16;13(24):3156. doi: 10.3390/nano13243156.

Abstract

A solid-solution cathode of LiCoPO4-LiNiPO4 was investigated as a potential candidate for use with the Li4Ti5O12 (LTO) anode in Li-ion batteries. A pre-synthesized nickel-cobalt hydroxide precursor is mixed with lithium and phosphate sources by wet ball milling, which results in the final product, LiNiyCo1-yPO4 (LNCP) by subsequent heat treatment. Crystal structure and morphology of the product were analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Its XRD patterns show that LNCP is primarily a single-phase compound and has olivine-type XRD patterns similar to its parent compounds, LiCoPO4 and LiNiPO4. Synchrotron X-ray absorption spectroscopy (XAS) analysis, however, indicates that Ni doping in LiCoPO4 is unfavorable because Ni2+ is not actively involved in the electrochemical reaction. Consequently, it reduces the charge storage capability of the LNCP cathode. Additionally, ex situ XRD analysis of cycled electrodes confirms the formation of the electrochemically inactive rock salt-type NiO phase. The discharge capacity of the LNCP cathode is entirely associated with the Co3+/Co2+ redox couple. The electrochemical evaluation demonstrated that the LNCP cathode paired with the LTO anode produced a 3.12 V battery with an energy density of 184 Wh kg-1 based on the cathode mass.

Keywords: Li-ion battery; X-ray absorption spectroscopy; high-voltage cathode; hydroxide precursor.