Modeling greenhouse gas emissions from riverine systems: A review

Water Res. 2024 Feb 15:250:121012. doi: 10.1016/j.watres.2023.121012. Epub 2023 Dec 12.

Abstract

Despite the recognized importance of flowing waters in global greenhouse gas (GHG) budgets, riverine GHG models remain oversimplified, consequently restraining the development of effective prediction for riverine GHG emissions feedbacks. Here we elucidate the state of the art of riverine GHG models by investigating 148 models from 122 papers published from 2010 to 2021. Our findings indicate that riverine GHG models have been mostly data-driven models (83%), while mechanistic and hybrid models were uncommonly applied (12% and 5%, respectively). Overall, riverine GHG models were mainly used to explain relationships between GHG emissions and biochemical factors, while the role of hydrological, geomorphic, land use and cover factors remains missing. The development of complex and advanced models has been limited by data scarcity issues; hence, efforts should focus on developing affordable automatic monitoring methods to improve data quality and quantity. For future research, we request for basin-scale studies explaining river and land-surface interactions for which hybrid models are recommended given their flexibility. Such a holistic understanding of GHG dynamics would facilitate scaling-up efforts, thereby reducing uncertainties in global GHG estimates. Lastly, we propose an application framework for model selection based on three main criteria, including model purpose, model scale and the spatiotemporal characteristics of GHG data, by which optimal models can be applied in various study conditions.

Keywords: Driving factor; Greenhouse gas; Modeling; River; Stream.

Publication types

  • Review

MeSH terms

  • Carbon Dioxide
  • Greenhouse Effect
  • Greenhouse Gases* / analysis
  • Rivers

Substances

  • Greenhouse Gases
  • Carbon Dioxide