The tumor immune microenvironment remodeling and response to HER2-targeted therapy in HER2-positive advanced gastric cancer

IUBMB Life. 2023 Dec 21. doi: 10.1002/iub.2804. Online ahead of print.

Abstract

Combination therapy with anti-HER2 agents and immunotherapy has demonstrated significant clinical benefits in gastric cancer (GC), but the underlying mechanism remains unclear. In this study, we used multiplex immunohistochemistry to assess the changes of the tumor microenvironment in 47 advanced GC patients receiving anti-HER2 therapy. Additionally, we performed single-cell transcriptional sequencing to investigate potential cell-to-cell communication and molecular mechanisms in four HER2-positive GC baseline samples. We observed that post-treated the infiltration of NK cells, CD8+ T cells, and B lymphocytes were significantly higher in patients who benefited from anti-HER2 treatment than baseline. Further spatial distribution analysis demonstrated that the interaction scores between NK cells and CD8+ T cells, B lymphocytes and M2 macrophages, B lymphocytes and Tregs were also significantly higher in benefited patients. Cell-cell communication analysis from scRNA sequencing showed that NK cells utilized CCL3/CCL4-CCR5 to recruit CD8+ T cell infiltration. B lymphocytes employed CD74-APP/COPA/MIF to interact with M2 macrophages, and utilized TNF-FAS/ICOS/TNFRSR1B to interact with Tregs. These cell-cell interactions contribute to inhibit the immune resistance of M2 macrophages and Tregs. Our research provides potential guidance for the use of anti-HER2 therapy in combination with immune therapy.

Keywords: advanced gastric cancer; anti-HER2 therapy; spatial distribution; tumor immune microenvironment.