Data reconciliation connected to guard bands to set specification limits related to risk assessment for radiopharmaceutical activity

Heliyon. 2023 Nov 28;9(12):e22992. doi: 10.1016/j.heliyon.2023.e22992. eCollection 2023 Dec.

Abstract

Radiopharmaceuticals have been used to diagnose several diseases, particularly because the procedure is non-invasive. However, it is important that the correct amount of radiopharmaceutical is used to avoid inaccurate diagnostic results and suboptimal therapeutic outcomes. The amount of the radiopharmaceutical is measured when produced (by the supplier) and a second time (by the receiver), before it's use. When measured at the receiver, the result is corrected for its normal radioactivity decay. Even then, it is possible that both measurements should be considered nominal different or even statistically different when compared through various statistical tools. This research combines two innovative techniques in the field of clinical metrology. The first technique is data reconciliation, which not only enhances measurement accuracy but also reduces measurement uncertainty. The second technique involves using uncertainty information to establish specification limits for compliance assessments. In this way, our proposal aimed to minimize the risk of making incorrect decisions regarding the conformity of the concentration of radiopharmaceutical activity, that is, rejecting an item or batch that is within specification or accepting an item or batch that is outside of specification. A spreadsheet, based on these metrology fundamentals, is available to help the user with the calculations, presenting numerical and graphical results for some common radioisotopes. Reliable specification limits can be calculated and used to determine if the radiopharmaceutical is in accordance with its proposed application.

Keywords: Clinical metrology; Consumer risk; Decision limits; Measurement uncertainty; Pharmaceuticals; Quality control.