Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications

Adv Healthc Mater. 2024 Mar;13(8):e2302713. doi: 10.1002/adhm.202302713. Epub 2024 Jan 7.

Abstract

Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.

Keywords: biomaterials; cell signaling; drug delivery; growth factors; layer‐by‐layer; regenerative medicine; tissue engineering.

Publication types

  • Review

MeSH terms

  • Biocompatible Materials
  • Drug Delivery Systems
  • Layer-by-Layer Nanoparticles*
  • Polyelectrolytes
  • Tissue Engineering*

Substances

  • Biocompatible Materials
  • Polyelectrolytes