Roaming in the Unimolecular Decay of syn-Methyl-Substituted Criegee Intermediates

J Phys Chem A. 2023 Dec 28;127(51):10817-10827. doi: 10.1021/acs.jpca.3c05859. Epub 2023 Dec 18.

Abstract

Alkene ozonolysis generates transient carbonyl oxide species, known as Criegee intermediates, which are a significant nonphotolytic source of OH radicals in the troposphere. This study demonstrates that unimolecular decay of syn-methyl-substituted Criegee intermediates proceeds via 1,4 H atom transfer to vinyl hydroperoxides, resulting in OH fission to O-O products or, alternatively, OH roaming to hydroxycarbonyl products. Newly generated Criegee intermediates are shown to yield hydroxycarbonyls with sufficient internal excitation to dissociate via C-C fission to acyl and hydroxymethyl (CH2OH) radicals. The stabilized Criegee intermediates and unimolecular products are rapidly cooled in a pulsed supersonic expansion for photoionization detection with time-of-flight mass spectrometry. CH2OH products are identified by 2 + 1 resonance-enhanced multiphoton ionization via the 3pz Rydberg state upon unimolecular decay of CH3CHOO, (CH3)2COO, (CH3)(CH3CH2)COO, and (CH3)(CH2═CH)COO (methyl vinyl ketone oxide). The stabilized Criegee intermediates are separately detected using 10.5 eV photoionization. This study provides the first experimental evidence of roaming in the unimolecular decay of isoprene-derived methyl vinyl ketone oxide and extends earlier studies that reported stabilized hydroxycarbonyl products.