Development of Copper Nanoclusters-Based Turn-Off Nanosensor for Fluorescence Detection of Two Pyrethroid Pesticides (Cypermethrin and Lambda-Cyhalothrin)

J Fluoresc. 2023 Dec 18. doi: 10.1007/s10895-023-03537-0. Online ahead of print.

Abstract

Fluorescent copper nanoclusters (Cu NCs) were synthesized by using Withania somnifera (W. somnifera) plant extract as a biotemplate. Aqueous dispersion of W. somnifera-Cu NCs displays intense emission peak at 458 nm upon excitation at 350 nm. This fluorescence emission was utilized for the detection of two pyrethroid pesticides (cypermethrin and lambda-cyhalothrin) via "turn-off" mechanism. Upon the addition of two pyrethiod pesticides independently, the fluorescence emission of W. somnifera-Cu NCs was gradually decreased with increasing concentrations of both pesticides. It was noticed that the decrease in emission intensity at 458 nm was linearly dependent on the logarithm of both pesticides concentrations in the ranges of 0.01-100 μM and of 0.05-100 μM for cypermethrin and lambda-cyhalothrin, respectively. Consequently, the limits of detection were found to be 27.06 and 23.28 nM for cypermethrin and lambda-cyhalothrin, respectively. The as-fabricated W. somnifera-Cu NCs acted as a facile sensor for the analyses of cypermethrin and lambda-cyhalothrin in vegetables (tomato and bottle gourd), which demonstrates that it could be used as portable sensing platform for assaying of two pyrethroid pesticides in food samples.

Keywords: Cypermethrin; Fluorescence; Lambda-cyhalothrin; UV-visible spectroscopy; Vegetables; W. somnifera-Cu NCs.