Regulating Lewis Acidic Sites of 1T-2H MoS2 Catalysts for Solar-Driven Photothermal Catalytic H2 Production from Lignocellulosic Biomass

Nano Lett. 2024 Jan 10;24(1):331-338. doi: 10.1021/acs.nanolett.3c03947. Epub 2023 Dec 18.

Abstract

Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 μmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.

Keywords: 1T-2H MoS2; Hydrogen production; Lewis acidic sites; Lignocellulosic biomass; Photothermal catalysis.