Improvement of Intracellular Interactions through Liquid Crystalline Elastomer Scaffolds by the Alteration of Topology

ACS Omega. 2023 Nov 29;8(49):46878-46891. doi: 10.1021/acsomega.3c06528. eCollection 2023 Dec 12.

Abstract

Preparation of inherently bioactive scaffolds has become a challenging issue owing to their complicated synthesis and nonrobust modified cell-actuating property. Liquid crystalline elastomers (LCEs), due to their combined specialties of liquid crystals and elastomers as well as their ability to respond to various kinds of stimuli, have reversibly led to the design of a new class of stimuli-responsive tissue-engineered scaffolds. In this line, in the first stage of this research work, synthesis and evaluation of acrylate-based LCE films (LCEfilm) encompassing mesogenic monomers are carried out. In the second step, the design of an affordable electrospinning technique for preparing LCE nanofibers (LCEfiber) as a problematic topic, thanks to the low molecular weight of the mesogenic chains of LCEs, is investigated. For this purpose, two approaches are considered, including (1) photo-cross-linking of electrospun LCEfiber and (2) blending LCE with poly(ε-caprolactone) (PCL) to produce morphologically stable nanofibers (PCL-LCEfiber). In the following, thermal, mechanical, and morphological evaluations show the optimized crosslinker (mol)/aliphatic spacer (mol) molar ratio of 50:50 for LCEfilm samples. On the other hand, for LCEfiber samples, the appropriate amounts of excessive mesogenic monomer and PCL/LCE (v/v) to fabricate the uniform nanofibers are determined to be 20% and 1:2, respectively. Eventually, PC12 cell compatibility and the impact of the liquid crystalline phase on the PC12 cell dynamic behavior of the samples are examined. The obtained results reveal that PC12 cells cultured on electrospun PCL-LCEfiber nanofibers with an average diameter of ∼659 nm per sample are alive and the scaffold has susceptibility for cell proliferation and actuation because of the rapid increase in cell density and number of singularity points formed in time-lapse cell imaging. Moreover, the PCL-LCEfiber nanofibrous scaffold exhibits a high performance for cell differentiation according to detailed biological evaluations such as gene expression level measurements. The time-lapse evaluation of PC12 cell flow fields confirms the significant influence of the reprogrammable liquid crystalline phase in the PCL-LCEfiber nanofibrous scaffold on topographical cue induction compared to the biodegradable PCL nanofibers.