Multiple modes of DNA compaction by protamine

bioRxiv [Preprint]. 2023 Dec 8:2023.12.08.570784. doi: 10.1101/2023.12.08.570784.

Abstract

In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form bends and loops that unravel at 10-40 pN forces as well as coils that shorten the contour length by up to 40% and withstand forces strong enough (~55 pN) for strand separation. Strand separation nucleates coils, indicating protamine insertion into DNA bases. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.

Publication types

  • Preprint