Development of 3D melanoma cultures on a hyaluronic acid-based scaffold with synthetic self-assembling peptides: Electroporation enhancement

Bioelectrochemistry. 2024 Apr:156:108624. doi: 10.1016/j.bioelechem.2023.108624. Epub 2023 Dec 12.

Abstract

Electrochemotherapy (ECT) with bleomycin is an effective antitumor treatment. Still, researchers are investigating new drugs and electroporation conditions to improve its efficacy. To this aim, in vivo assays are accurate but expensive and ethically questionable. Conversely, in vitro assays, although cheaper and straightforward, do not reflect the architecture of the biological tissue because they lack a tridimensional (3D) structure (as in the case of two-dimensional [2D] in vitro assays) or do not include all the extracellular matrix components (as in the case of 3D in vitro scaffolds). To address this issue, 3D in vitro models have been proposed, including spheroids and hydrogel-based cultures, which require a suitable low-conductive medium to allow cell membrane electroporation. In this study, a synthetic scaffold based on hyaluronic acid (HA) and self-assembling peptides (SAPs; EAbuK), condensed with a Laminin-derived adhesive sequence (IKVAV), is proposed as a reliable alternative. We compare SKMEL28 cells cultured in the HA-EAbuK-IKVAV scaffold to the control (HA only scaffold). Three days after seeding, the culture on the HA-EAbuK-IKVAV scaffold showed collagen production. SKMEL28 cells cultured on the HA-EAbuK-IKVAV scaffold started to be electroporated at 400 V/cm, whereas, at the same electric field intensity, those cultured on HA were not. As a reference, 2D experiments showed that electroporation of SKMEL28 cells starts at 600 V/cm using an electroporation buffer and at 800 V/cm in a culture medium, but with very low efficiency (<50 % of cells electroporated). 3D cultures on HA-EAbuK-IKVAV allowed the simulation of a more reliable microenvironment and may represent a valuable tool for studying electroporation conditions. Using Finite Element Analysis (FEA) to compute the transmembrane potential, we detected the influence of inhomogeneity of the extracellular matrix on electroporation effect. Our 3D cell culture electroporation simulations showed that the transmembrane potential increased when collagen surrounded the cells. Of note, in the collagen-enriched HA-EAbuK-IKVAV scaffold, EP was already improved at lower electric field intensities. This study shows the influence of the extracellular matrix on electric conductivity and electric field distribution on cell membrane electroporation and supports the adoption of more reliable 3D scaffolds in experimental electroporation studies.

MeSH terms

  • Collagen / therapeutic use
  • Electroporation / methods
  • Extracellular Matrix
  • Humans
  • Hyaluronic Acid* / chemistry
  • Melanoma* / pathology
  • Tissue Scaffolds / chemistry
  • Tumor Microenvironment

Substances

  • Hyaluronic Acid
  • Collagen