Microwave deicing properties and carbon emissions assessment of asphalt mixtures containing steel slag towards resource conservation and waste reuse

Sci Total Environ. 2024 Feb 20:912:169189. doi: 10.1016/j.scitotenv.2023.169189. Epub 2023 Dec 12.

Abstract

A large amount of solid waste, such as steel slag (SS), is generated annually. At the same time, the shortage of road construction materials is becoming a concern. In this study, to recycle and reuse SS as a substitute for natural aggregates to achieve resource conservation and sustainable development of roads were conducted. First, the electromagnetic performance of SS was explored to evaluate its wave-absorbing properties. Next, the effect of different SS contents on heating properties, surface temperature, heating uniformity, and ice melting time (IMT) were investigated. Finally, the carbon emissions assessment (CEA) of conventional asphalt mixture (CAM) and steel slag asphalt mixture (SSAM) was compared. Results indicated that SS has ferromagnetic behavior and higher electromagnetic parameters, showing better wave-absorbing properties than limestone. There were three stages during microwave heating (MH): ice melting, moisture emitting, and stabilization. In addition, heating uniformity tends to be poor with the increase of SS, and samples with 100 % content of SS have the highest standard deviation of 21.04 °C and 20.77 °C after 270 s at -10 °C and - 20 °C. Samples containing 50 % SS have the best microwave deicing properties, which can reduce the IMT by 28.57 % to 46.18 % at different initial freezing temperatures and ice thickness compared to CAM. Furthermore, CEA revealed that CAM and SSAM's carbon emissions over road construction's life cycle are similar (around 27,000 kg) and originate mainly from the mixing and raw material extraction phases. However, SSAM leads to better environmental and economic benefits and provides an exemplary resource conservation and waste reuse solution.

Keywords: Asphalt mixtures; Carbon emissions assessment; Ice melting time; Microwave deicing; Steel slag.