Elucidating granulocytic myeloid-derived suppressor cell heterogeneity during Staphylococcus aureus biofilm infection

J Leukoc Biol. 2024 Mar 29;115(4):620-632. doi: 10.1093/jleuko/qiad158.

Abstract

Myeloid-derived suppressor cells (MDSCs) are pathologically activated immature myeloid cells with immunosuppressive activity that expand during chronic inflammation, such as cancer and prosthetic joint infection (PJI). Myeloid-derived suppressor cells can be broadly separated into 2 populations based on surface marker expression and function: monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs). Granulocytic myeloid-derived suppressor cells are the most abundant leukocyte infiltrate during PJI; however, how this population is maintained in vivo and cellular heterogeneity is currently unknown. In this study, we identified a previously unknown population of Ly6G+Ly6C+F4/80+MHCII+ MDSCs during PJI that displayed immunosuppressive properties ex vivo. We leveraged F4/80 and MHCII expression by these cells for further characterization using cellular indexing of transcriptomes and epitopes by sequencing, which revealed a distinct transcriptomic signature of this population. F4/80+MHCII+ MDSCs displayed gene signatures resembling G-MDSCs, neutrophils, and monocytes but had significantly increased expression of pathways involved in cytokine response/production, inflammatory cell death, and mononuclear cell differentiation. To determine whether F4/80+MHCII+ MDSCs represented an alternate phenotypic state of G-MDSCs, Ly6G+Ly6C+F4/80-MHCII- G-MDSCs from CD45.1 mice were adoptively transferred into CD45.2 recipients using a mouse model of PJI. A small percentage of transferred G-MDSCs acquired F4/80 and MHCII expression in vivo, suggesting some degree of plasticity in this population. Collectively, these results demonstrate a previously unappreciated phenotype of F4/80+MHCII+ MDSCs during PJI, revealing that a granulocytic-to-monocytic transition can occur during biofilm infection.

Keywords: S. aureus; CITE-seq; G-MDSC; Transcriptomics.

MeSH terms

  • Biofilms
  • Monocytes
  • Myeloid Cells
  • Myeloid-Derived Suppressor Cells* / metabolism
  • Staphylococcus aureus