High-Density Packing of Spherical Microdomains from A(AB3)3 Dendron-like Miktoarm Star Copolymer

ACS Macro Lett. 2024 Jan 16;13(1):8-13. doi: 10.1021/acsmacrolett.3c00518. Epub 2023 Dec 12.

Abstract

An A(AB3)3 dendron-like miktoarm star copolymer consisting of polystyrene (PS, A) and poly(2-vinylpyridine) (P2VP, B) was synthesized using a series of anionic polymerization, atom-transfer radical polymerization (ATRP), and click reaction. The morphology of A(AB3)3 changed greatly depending on the volume fraction of A and the chain asymmetry. Interestingly, a body-centered cubic spherical phase was found even at fA = 0.51 because the chain architecture of A(AB3)3 stabilizes the large interfacial curvature toward A domains. On the other hand, when the length difference between the end and middle A blocks decreased, a hexagonally packed cylindrical phase was formed at fA = 0.50. This is attributed to the fact that the middle A chains are arranged in a more relaxed way, resulting in a milder interfacial curvature toward A domains. The experimental observations are well-consistent with the predictions based on self-consistent-field theory.