Assessment of Endothelial Reactivity by Measurement of Vascular Material Response to Shear Stress: A Feasibility Study

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340551.

Abstract

Flow-mediated dilation (FMD) evaluates the relative change in arterial diameter during hyperemia to assess the endothelial response due to a shear stimulus. However, conventional FMD measures diameter response alone and the alterations in the arterial wall's material properties during reactive hyperemia, which also influence dilation, go unaddressed. In this work, we examine the material response (MR) of the artery during reactive hyperemia using clinically relevant stiffness markers for the assessment of endothelial reactivity (ER). For this, we have developed an in-house brachial cuff control (BCC) system to continuously acquire brachial pressure which can be integrated with simultaneous measurement of brachial diameter and used to quantify the relative changes in wall property during hyperemia non-invasively. The assessment of endothelial reactivity using material response (ERAMR) was conducted on 20 healthy participants (12M/8F) and the results were compared with conventional FMD (FMD%). The mean pressure response gave an inverse trend to that of diameter response with varying magnitudes during reactive hyperemia (18.71% from baseline for diameter and 2.45% for pressure), there was a significant difference in the measurement of FMD and ERAMR (P < 0.05). The larger distribution of ERAMR compared to FMD% in box-plots further implies the inclusion of within-subject variations. Hence, ERAMR can be a potential estimate of ER, given the need for intensive validations in this line on larger cohorts.Clinical Relevance- This study demonstrates the independent role of arterial wall material properties to quantify endothelial reactivity in response to a shear stimulus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brachial Artery / diagnostic imaging
  • Brachial Artery / physiology
  • Endothelium, Vascular
  • Feasibility Studies
  • Humans
  • Hyperemia*
  • Vasodilation / physiology