Achieving stable Zn metal anode via a hydrophobic and Zn2+-conductive amorphous carbon interface

J Colloid Interface Sci. 2024 Mar:657:644-652. doi: 10.1016/j.jcis.2023.11.178. Epub 2023 Dec 2.

Abstract

High security and low cost enable aqueous zinc ion batteries (AZIBs) with huge application potential in large-scale energy storage. Nevertheless, the loathsome dendrite and side reactions of Zn anode are harmful to the cycling lifespan of AZIBs. Here, a new type of thin amorphous carbon (AC) interface layer (∼100 nm in thickness) is in-situ constructed on the Zn foil (Zn@AC) via a facile low-temperature chemical vapor deposition (LTCVD) method, which owns a hydrophobic peculiarity and a high Zn2+ transference rate. Moreover, this AC coating can homogenize the surface electric field and Zn2+ flux to realize the uniform deposition of Zn. Consequently, dendrite growth and side reactions are concurrently mitigated. Symmetrical cell achieves a dendrite-free Zn plating/stripping over 500 h with a low overpotential of 31 mV at 1 mA cm-2/1 mAh cm-2. Of note, the full cell with a MnO2/CNT cathode harvests a capacity retention of 70.0 % after 550 cycles at 1 A/g. In addition, the assembled flexible quasi-solid-state AZIBs display a stable electrochemical performance under deformation conditions and maintain a capacity of 76.5 mAh/g at 5 A/g after 300 cycles. This innovative amorphous carbon layer is expected to provide a new insight into stabilizing Zn anode.

Keywords: Amorphous carbon; Aqueous zinc ion batteries; Electrochemical performance; Low-temperature chemical vapor deposition; Zn anode.