Stability, Mounting, and Measurement Considerations for High-Power GaN MMIC Amplifiers

Sensors (Basel). 2023 Dec 4;23(23):9602. doi: 10.3390/s23239602.

Abstract

In this paper, the precise design of a high-power amplifier (HPA) is shown, along with the problems associated with the stability of "on-wafer" measurements. Here, techniques to predict possible oscillations are discussed to ensure the stability of a monolithic microwave-integrated circuit (MMIC). In addition, a deep reflection is made on the instabilities that occur when measuring both on wafer and using a mounted chip. Stability techniques are used as tools to characterize measurement results. Both a precise design and instabilities are shown through the design of a three-stage X-band HPA in gallium nitride (GaN) from the WIN Semiconductors Corp. foundry. As a result, satisfactory performance was obtained, achieving a maximum output power equal to 42 dBm and power-added efficiency of 32% at a 20 V drain bias. In addition to identifying critical points in the design or measurement of the HPA, this research shows that the stability of the amplifier can be verified through a simple analysis and that instabilities are often linked to errors in the measurement process or in the characterization of the measurement process.

Keywords: critical points; gallium-nitride high-power amplifier; measurement characterization; monolithic microwave-integrated circuit; stability analysis.