Robot-Aided Motion Analysis in Neurorehabilitation: Benefits and Challenges

Diagnostics (Basel). 2023 Nov 29;13(23):3561. doi: 10.3390/diagnostics13233561.

Abstract

In the neurorehabilitation field, robot-aided motion analysis (R-AMA) could be helpful for two main reasons: (1) it allows the registration and monitoring of patients' motion parameters in a more accurate way than clinical scales (clinical purpose), and (2) the multitude of data produced using R-AMA can be used to build machine learning algorithms, detecting prognostic and predictive factors for better motor outcomes (research purpose). Despite their potential in clinical settings, robotic assessment tools have not gained widespread clinical acceptance. Some barriers remain to their clinical adoption, such as their reliability and validity compared to the existing standardized scales. In this narrative review, we sought to investigate the usefulness of R-AMA systems in patients affected by neurological disorders. We found that the most used R-AMA tools are the Lokomat (an exoskeleton device used for gait and balance rehabilitation) and the Armeo (both Power and Spring, used for the rehabilitation of upper limb impairment). The motion analysis provided by these robotic devices was used to tailor rehabilitation sessions based on the objective quantification of patients' functional abilities. Spinal cord injury and stroke patients were the most investigated individuals with these common exoskeletons. Research on the use of robotics as an assessment tool should be fostered, taking into account the biomechanical parameters able to predict the accuracy of movements.

Keywords: biomechanics; neurorehabilitation; objective motor assessment; robot-aided motion analysis.

Publication types

  • Review