Bacteroidales as a fecal contamination indicator in fresh produce industry: A baseline measurement

J Environ Manage. 2024 Feb:351:119641. doi: 10.1016/j.jenvman.2023.119641. Epub 2023 Dec 7.

Abstract

Foodborne outbreaks caused by fecal contamination of fresh produce represent a serious concern to public health and the economy. As the consumption of fresh produce increases, public health officials and organizations have pushed for improvements in food safety procedures and environmental assessments to reduce the risk of contamination. Visual inspections and the establishment of "buffer zones" between animal feeding operations and producing fields are the current best practices for environmental assessments. However, a generalized distance guideline and visual inspections may not be enough to account for all environmental risk variables. Here, we report a baseline measurement surveying the background Bacteroidales concentration, as a quantitative fecal contamination indicator, in California's Salinas Valley. We collected a total of 1632 samples from two romaine lettuce commercial fields at the time of harvesting through two seasons in a year. The quantification of Bacteroidales concentration was performed using qPCR, revealing a notably low concentration (0-2.00 copies/cm2) in the commercial fields. To further enhance the applicability of our findings, we developed a user-friendly method for real-world fecal contamination risk assessment that seamlessly integrates with industry practices. Through the generation of heatmaps that visually illustrate varying risk levels across fields, this approach can identify site-specific risks and offer fresh produce stakeholders a more comprehensive understanding of their land. We anticipate this work can encourage the use of Bacteroidales in the fresh produce industry to monitor fecal contamination and prevent future foodborne outbreaks.

Keywords: Bacteroidales; Baseline study; Fecal contamination; Fresh produce.

MeSH terms

  • Animals
  • Arthropods*
  • Bacteroidetes
  • Feces
  • Food Contamination* / analysis