High-Performance Biomemristor Embedded with Graphene Quantum Dots

Nanomaterials (Basel). 2023 Nov 25;13(23):3021. doi: 10.3390/nano13233021.

Abstract

By doping a dielectric layer material and improving the device's structure, the electrical characteristics of a memristor can be effectively adjusted, and its application field can be expanded. In this study, graphene quantum dots are embedded in the dielectric layer to improve the performance of a starch-based memristor, and the PMMA layer is introduced into the upper and lower interfaces of the dielectric layer. The experimental results show that the switching current ratio of the Al/starch: GQDs/ITO device was 102 times higher than that of the Al/starch/ITO device. However, the switching current ratio of the Al/starch: GQDs/ITO device was further increased, and the set voltage was reduced (-0.75 V) after the introduction of the PMMA layer. The introduction of GQDs and PMMA layers can regulate the formation process of conductive filaments in the device and significantly improve the electrical performance of the memristor.

Keywords: PMMA layer; graphene quantum dots; resistive memory; starch.