In Vivo Vascularization Chamber for the Implantation of Embryonic Kidneys

Tissue Eng Part C Methods. 2024 Feb;30(2):63-72. doi: 10.1089/ten.TEC.2023.0225. Epub 2024 Jan 24.

Abstract

A major obstacle to the implantation of ex vivo engineered tissues is the incorporation of functional vascular supply to support the growth of new tissue and to minimize ischemic injury. Existing prevascularization systems, such as arteriovenous (AV) loop-based systems, require microsurgery, limiting their use to larger animals. We aimed to develop an implantable device that can be prevascularized to enable vascularization of tissues in small rodents, and test its application on the vascularization of embryonic kidneys. Implanting the chamber between the abdominal aorta and the inferior vena cava, we detected endothelial cells and vascular networks after 48 h of implantation. Loading the chamber with collagen I (C), Matrigel (M), or Matrigel + vascular endothelial growth factor) (MV) had a strong influence on vascularization speed: Chambers loaded with C took 7 days to vascularize, 4 days for chambers with M, and 2 days for chambers with MV. Implantation of E12.5 mouse embryonic kidneys into prevascularized chambers (C, MV) was followed with significant growth and ureteric branching over 22 days. In contrast, the growth of kidneys in non-prevascularized chambers was stunted. We concluded that our prevascularized chamber is a valuable tool for vascularizing implanted tissues and tissue-engineered constructs. Further optimization will be necessary to control the directional growth of vascular endothelial cells within the chamber and the vascularization grade. Impact Statement Vascularization of engineered tissue, or organoids, constructs is a major hurdle in tissue engineering. Failure of vascularization is associated with prolonged ischemia time and potential tissue damage due to hypoxic effects. The method presented, demonstrates the use of a novel chamber that allows rapid vascularization of native and engineered tissues. We hope that this technology helps to stimulate research in the field of tissue vascularization and enables researchers to generate larger engineered vascularized tissues.

Keywords: AV loop; developmental engineering; flow-through chamber; regenerative medicine; tissue engineering; vascularization chamber.

MeSH terms

  • Animals
  • Endothelial Cells*
  • Kidney
  • Mice
  • Neovascularization, Physiologic
  • Tissue Engineering / methods
  • Tissue Scaffolds
  • Vascular Endothelial Growth Factor A*

Substances

  • Vascular Endothelial Growth Factor A