Characterization of MicroRNA expression profiles in the ovarian tissue of goats during the sexual maturity period

J Ovarian Res. 2023 Dec 8;16(1):234. doi: 10.1186/s13048-023-01318-8.

Abstract

Background: The ovary is an important reproductive organ in mammals, and its development directly affects the sexual maturity and reproductive capacity of individuals. MicroRNAs (miRNAs) are recognized as regulators of reproductive physiological processes in various animals and have been shown to regulate ovarian development through typical targeting and translational repression. However, little is known about the regulatory role of miRNAs in ovarian tissue development during sexual maturity in goats. To comprehensively profile the different physiological stages of sexual maturation in goats, we performed small-RNA sequencing of ovarian tissue samples collected at four specific time points (1 day after birth (D1), 2 months old (M2), 4 months old (M4), and 6 months old (M6)). In addition, we used ELISAs to measure serum levels of reproductive hormones to study their temporal changes.

Results: The results showed that serum levels of gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, oestradiol, progesterone, oxytocin, and prolactin were lower in goats at the D1 stage than at the other three developmental stages (P < 0.05). The secretion patterns of these seven hormones show a similar trend, with hormone levels reaching their peaks at 4 months of age. A total of 667 miRNAs were detected in 20 libraries, and 254 differentially expressed miRNAs and 3 groups of miRNA clusters that had unique expression patterns were identified (|log2-fold change|> 1, FDR < 0.05) in the 6 comparison groups. RT‒qPCR was employed to confirm that the expression pattern of the 15 selected miRNAs was consistent with the Illumina sequencing results. Gene ontology analyses revealed significant enrichment of GO terms such as cell proliferation regulation, epithelial cell development, and amino acid transport, as well as important signaling pathways including the MAPK signaling pathway, the PI3K-Akt signaling pathway, and the oestrogen signaling pathway. Further miRNA‒mRNA regulation network analysis revealed that 8 differentially expressed miRNAs (chi-miR-1343, chi-miR-328-3p, chi-miR-877-3p, chi-miR-296-3p, chi-miR-128-5p, chi-miR-331-3p, chi-miR-342-5p and chi-miR-34a) have important regulatory roles in ovarian cell proliferation, hormone secretion and metabolism-related biological processes.

Conclusions: Overall, our study investigated the changes in serum hormone and miRNA levels in the ovaries. These data provide a valuable resource for understanding the molecular regulatory mechanisms of miRNAs in ovarian tissue during the sexual maturity period in goats.

Keywords: Goats; MicroRNA; Ovary; Reproductive hormones; Sexual maturity.

MeSH terms

  • Animals
  • Estradiol
  • Female
  • Gene Expression Profiling
  • Goats* / genetics
  • Humans
  • Infant
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Phosphatidylinositol 3-Kinases / genetics

Substances

  • Phosphatidylinositol 3-Kinases
  • MicroRNAs
  • Estradiol
  • MIRN296 microRNA, human
  • MIRN877 microRNA, human