The association between chrononutrition behaviors and muscle health among older adults: The study of muscle, mobility and aging

Aging Cell. 2023 Dec 7:e14059. doi: 10.1111/acel.14059. Online ahead of print.

Abstract

Emerging studies highlight chrononutrition's impact on body composition through circadian clock entrainment, but its effect on older adults' muscle health remains largely overlooked. To determine the associations between chrononutrition behaviors and muscle health in older adults. Dietary data from 828 older adults (76 ± 5 years) recorded food/beverage amounts and their clock time over the past 24 h. Studied chrononutrition behaviors included: (1) The clock time of the first and last food/beverage intake; (2) Eating window (the time elapsed between the first and last intake); and (3) Eating frequency (Number of self-identified eating events logged with changed meal occasion and clock time). Muscle mass (D3 -creatine), leg muscle volume (MRI), grip strength (hand-held dynamometer), and leg power (Keiser) were used as outcomes. We used linear regression to assess the relationships between chrononutrition and muscle health, adjusting for age, sex, race, marital status, education, study site, self-reported health, energy, protein, fiber intake, weight, height, and moderate-to-vigorous physical activity. Average eating window was 11 ± 2 h/day; first and last intake times were at 8:22 and 19:22, respectively. After multivariable adjustment, a longer eating window and a later last intake time were associated with greater muscle mass (β ± SE: 0.18 ± 0.09; 0.27 ± 0.11, respectively, p < 0.05). The longer eating window was also marginally associated with higher leg power (p = 0.058). An earlier intake time was associated with higher grip strength (-0.38 ± 0.15; p = 0.012). Chrononutrition behaviors, including longer eating window, later last intake time, and earlier first intake time were associated with better muscle mass and function in older adults.

Keywords: body's internal clock; chrono diet; circadian nutrition; muscle fitness in aging.