The Effect of PGAM5 on Regulating Mitochondrial Dysfunction in Ischemic Stroke

Discov Med. 2023 Dec;35(179):1123-1133. doi: 10.24976/Discov.Med.202335179.109.

Abstract

Background: Ischemic stroke is an acute cerebrovascular disease with high mortality rates and poor prognoses. The influence of ischemic stroke includes a heavy economic burden to patients and society, making the exploration of new therapeutic targets for preventing and treating ischemic stroke urgent. This study aimed to explore the effect of phosphoglycerate mutase family member 5 (PGAM5) on oxidative stress and mitochondrial dysfunction in ischemic stroke.

Methods: The model of ischemic neuronal brain injury was established through culturing purchased human neuroblastoma cells (SH-SY5Y) by oxygen-glucose deprivation/reoxygenation (OGD/R). There were six experimental groups, including the OGD/R model group (SH-cells of OGD/R model), OE-NC group (cells of OGD/R model transfected with scramble cDNA), OE-PGAM5 group (cells of OGD/R model transfected with full-length sequence of PGAM5), si-NC group (cells of OGD/R model transfected with negative control small interference (si)RNA), si-PGAM5 group (cells of OGD/R model transfected with siRNA for PGAM5 knockdown), and a control group (cells cultured normally). Cell counting kit-8 (CCK-8) and flow cytometry were used to determine the activity and apoptosis of cells. Subsequently, the effects of PGAM5 expression on oxidative stress and mitochondrial dysfunction were analyzed. Mitochondrial morphology was observed by transmission electron microscopy (TEM), and mitochondrial membrane potential (MMP) was determined by JC-1 fluorescent probe. The levels of reactive oxygen species (ROS) were measured by flow cytometry, and levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay (ELISA) assay. The expression of light chain (LC)3-II/I and autophagy-related gene 5 (ATG5) proteins were measured, and the regulation of PGAM5 expression on PTEN-induced putative protein kinase 1 (PINK1)/Parkin pathway was also explored.

Results: PGAM5 overexpression in OGD/R cells decreased the cell viability (p < 0.001) while increasing cell apoptosis (p < 0.01) compared to the OGD/R group. Inhibition of PGAM5 expression reversed the decreased cell viability (p < 0.001) and the increased cell apoptosis (p < 0.01). The JC-1 fluorescence showed that OGD/R treatment reduced mitochondrial membrane potential (p < 0.001) and TEM showed an obvious increase in phagosomes. In addition, OGD/R treatment enhanced oxidative stress (increased ROS, p < 0.01; increased MDA, p < 0.001; decreased SOD, p < 0.001), which could be further enhanced by overexpression of PGAM5 (ROS, p < 0.001; MDA, p < 0.001; SOD, p < 0.001) while reversed by the inhibition of PGAM5 (ROS, p < 0.01; MDA, p < 0.001; SOD, p < 0.001). The OGD/R-activated PINK1/Parkin pathway was inhibited by the knockdown of PGAM5 (p < 0.01) but promoted by the overexpression of PGAM5 (p < 0.05).

Conclusions: PGAM5 stimulates oxidative stress and impairs mitochondrial function in ischemic stroke, and regulates the PINK1/Parkin signaling pathway. Therefore, PGAM5 is likely to be a target for the therapy of ischemic stroke.

Keywords: PGAM5; PINK1/Parkin pathway; mitochondrial dysfunction; oxidative stress.

MeSH terms

  • Apoptosis / genetics
  • Glucose / metabolism
  • Humans
  • Ischemic Stroke*
  • Mitochondrial Diseases*
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / pharmacology
  • Neuroblastoma*
  • Oxygen / metabolism
  • Oxygen / pharmacology
  • Phosphoprotein Phosphatases / pharmacology
  • Protein Kinases
  • Reactive Oxygen Species / metabolism
  • Superoxide Dismutase / metabolism
  • Superoxide Dismutase / pharmacology
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitin-Protein Ligases / pharmacology

Substances

  • Reactive Oxygen Species
  • 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine
  • Oxygen
  • Protein Kinases
  • Ubiquitin-Protein Ligases
  • Superoxide Dismutase
  • Glucose
  • PGAM5 protein, human
  • Phosphoprotein Phosphatases
  • Mitochondrial Proteins