Val43 residue of NsrR is crucial for the nitric oxide response of Salmonella Typhimurium

Microbiol Spectr. 2024 Jan 11;12(1):e0302423. doi: 10.1128/spectrum.03024-23. Epub 2023 Dec 6.

Abstract

Abstract: In pathogenic bacteria, the flavohemoglobin Hmp is crucial in metabolizing the cytotoxic levels of nitric oxide (NO) produced in phagocytic cells, contributing to bacterial virulence. Hmp expression is predominantly regulated by the Rrf2 family transcription repressor NsrR in an NO-dependent manner; however, the underlying molecular mechanism in enterobacteria remains poorly understood. In this study, we identified Val43 of Salmonella Typhimurium NsrR (StNsrR) as a critical amino acid residue for regulating Hmp expression. The Val43-to-Ala-substituted mutant NsrR isolated through random and site-directed mutagenesis showed high binding affinity to the target DNA irrespective of NO exposure, resulting in a severe reduction in hmp transcription and slow NO metabolism in Salmonella under NO-producing conditions. Conversely, the Val43-to-Glu-substituted NsrR caused effects similar to nsrR null mutation, which directed hmp transcription and NO metabolism in a constitutive way. Comparative analysis of the primary sequences of NsrR and another NO-sensing Rrf2 family regulator, IscR, from diverse bacteria, revealed that Val43 of enterobacterial NsrR corresponds to Ala in Pseudomonas aeruginosa or Streptomyces coelicolor NsrR and Glu in enterobacterial IscR, all of which are located in the DNA recognition helix α3. The predicted structure of StNsrR in complex with the hmp DNA suggests dissimilar spatial stoichiometry in the interactions of Val43 and its substituted residues with the target DNA, consistent with the observed phenotypic changes in StNsrR Val43 mutants. Our findings highlight the discriminative roles of the NsrR recognition helix in regulating species-specific target gene expression, facilitating effective NO detoxification strategies in bacteria across diverse environments.

Importance: The precise regulation of flavohemoglobin Hmp expression by NsrR is critical for bacterial fitness, as excessive Hmp expression in the absence of NO can disturb bacterial redox homeostasis. While the molecular structure of Streptomyces coelicolor NsrR has been recently identified, the specific molecular structures of NsrR proteins in enterobacteria remain unknown. Our discovery of the crucial role of Val43 in the DNA recognition helix α3 of Salmonella NsrR offers valuable insights into the Hmp modulation under NO stress. Furthermore, the observed amino acid polymorphisms in the α3 helices of NsrR proteins across different bacterial species suggest the diverse evolution of NsrR structure and gene regulation in response to varying levels of NO pressure within their ecological niches.

Keywords: NsrR; Salmonella Typhimurium; flavohemoglobin Hmp; nitric oxide.

MeSH terms

  • Bacteria / metabolism
  • Bacterial Proteins / metabolism
  • Gene Expression Regulation, Bacterial
  • Nitric Oxide*
  • Oxidation-Reduction
  • Salmonella typhimurium* / genetics
  • Salmonella typhimurium* / metabolism

Substances

  • Nitric Oxide
  • Bacterial Proteins