Design of an anticancer organoruthenium complex as the guest and polydiacetylene-coated fluorogenic nanocarrier as the host: engineering nanocarrier using ene-yne conjugation for sustained guest release, enhanced anticancer activity and reduced in vivo toxicity

Dalton Trans. 2024 Jan 16;53(3):966-985. doi: 10.1039/d3dt03358a.

Abstract

Despite the enormous efforts made over the past two decades to develop metallodrugs and nanocarriers for metallodrug delivery, there are still few precise strategies that aim to optimize the design of both metallodrugs and metallodrug carriers jointly in a concerted effort. In this work, three half-sandwich ruthenium(II) complexes with pyridylimidazo[1,5-a]pyridine ligand functionalized with polycyclic aromatic moiety (Ru(nap), Ru(ant), Ru(pyr)) are evaluated as possible anticancer candidates and polydiacetylene (PDA)-coated amino-functionalized mesoporous silica nanoparticles (AMSNs) are designed as a functional nanocarrier for drug delivery. Ru(pyr) exhibits higher cytotoxicity in HT-29 colorectal cancer cells compared to other complexes and cis-platin, but it does not exhibit better cellular uptake. Ru(pyr) is found to be preferentially accumulated in plasma, mitochondria, and ER-Golgi membrane. The complex induces cell cycle arrest in the G0/G1 phase, while higher concentrations cause programmed cell death via apoptosis. Ru(pyr) influences cancer cell adhesion property and acts as an antioxidant in HT-29 cells. In order to modulate the anticancer potency of Ru(pyr), AMSNs are used to encapsulate the complex, and then diacetylene self-assembly is allowed to deposit on the surface of the nanoparticles. Subsequently, the nanoparticles undergo topopolymerization, which results in π-conjugated PDA-Ru(pyr)@AMSNs. Owing to the ene-yne polymeric skeleton in the backbone, the non-fluorescent AMSNs turn into red-emissive particles, which are exploited for cell imaging applications. The release profile analysis reveals that such a π-conjugated polymer prevents the premature release of the complex from porous silica nanoparticles with the accelerated release of the complex in an acidic medium compared to physiological conditions. The PDA gatekeepers have also been proven to enhance the cellular internalization of Ru(pyr) with slow continuous release from the nanoformulation. Zebrafish embryo toxicity analysis suggests that the PDA-coated nanocarriers could be suitable candidates for in vivo investigations.

MeSH terms

  • Animals
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Drug Delivery Systems
  • Polyacetylene Polymer*
  • Polymers
  • Ruthenium* / pharmacology
  • Silicon Dioxide / pharmacology
  • Zebrafish

Substances

  • polydiacetylene
  • Polymers
  • Silicon Dioxide
  • Ruthenium
  • Antineoplastic Agents
  • Polyacetylene Polymer