A Europium Metal-Organic Framework and Its Polymer Composite Membrane as Switch-Off Fluorescence Sensors for Antibiotic Detection in Lake Water

Inorg Chem. 2023 Dec 25;62(51):21277-21289. doi: 10.1021/acs.inorgchem.3c03389. Epub 2023 Dec 6.

Abstract

The detection of antibiotic residues is of great significance in monitoring their overuse in healthcare, livestock and poultry farming, and agricultural production. Herein, EuCl3 and 4,4'-dicarboxyl-diphenoxyethene (H2DPOE) ionothermally reacted in 1-methyl-3-butylimidazolium chloride to give a europium metal-organic framework (Eu-DPOE). Eu-DPOE shows different fluorescence quenching rates for sensing eight antibiotics under different excitation wavelengths. Eu-DPOE displays a fast response, high selectivity, and sensitivity in antibiotic detection by fluorescence quenching. Eu-DPOE can sensitively detect TCs (tetracyclines), NOR (norfloxacin), NFT (furazolidone), ODZ (ornidazole), SDZ (sulfadiazine), and CHL (chloramphenicol) with limits of detection below 0.5 μmol/L. It provides a convenient and rapid tool for sensing antibiotics in aqueous solution. The detection mechanism is a competition absorption between DPOE2- and antibiotics with the supports from powder X-ray diffraction (PXRD), UV-vis spectra, and fluorescence lifetime. With a composite membrane of poly(vinylidene fluoride) (PVDF) matrix loading Eu-DPOE (Eu-DPOE@PVDF), Eu-DPOE@PVDF exhibits a visual fluorescence response to NOR under a 254 nm UV lamp and NFT and CTC under 365 nm. Eu-DPOE@PVDF is applied in the quantitative detection of CTC, NOR, and NFT in lake water with recovery rates ranging from 88.37 to 113.8%. Totally, fluorescence-quenched Eu-DPOE@PVDF exhibits a fast response, high selectivity, and sensitivity in sensing CTC, NOR, and NFT.

MeSH terms

  • Anti-Bacterial Agents*
  • Europium / chemistry
  • Lakes
  • Metal-Organic Frameworks* / chemistry
  • Polymers
  • Water

Substances

  • Anti-Bacterial Agents
  • Metal-Organic Frameworks
  • polyvinylidene fluoride
  • Europium
  • Polymers
  • Water