Interfacial Engineering of Fluorinated TiO2 Nanosheets with Abundant Oxygen Vacancies for Boosting the Hydrogen Storage Performance of MgH2

Small. 2024 May;20(18):e2307965. doi: 10.1002/smll.202307965. Epub 2023 Dec 5.

Abstract

The interaction between fluorinated surface in the partially reduced nano-crystallite titanium dioxide (TiO2-x(F)) and MgH2 is studied for the first time. Compared with pristine MgH2 (416 °C), the onset desorption temperature of MgH2+5 wt.% TiO2-x(F) composite can be dramatically lowered to 189 °C. In addition, the composite exhibits remarkable dehydrogenation kinetics, which can release 6.0 wt.% hydrogen thoroughly within 6 min at 250 °C. The apparent activation energy for dehydriding is decreased from 268.42 to 119.96 kJ mol-1. Structural characterization and theoretical calculations indicate that the synergistic effect between multivalent Ti species, and the in situ formed MgF2 and MgF2-xHx is beneficial for improving the hydrogen storage performance of MgH2. Moreover, oxygen vacancies can accelerate the electron transportation and facilitate hydrogen diffusion. The study provides a novel perspective on the modification of MgH2 by fluorinated transition metal oxide catalyst.

Keywords: MgH2; catalyst; fluorine; hydrogen storage; oxygen vacancies.