Time-Dependent Differences in Vancomycin Sensitivity of Macrophages Underlie Vancomycin-Induced Acute Kidney Injury

J Pharmacol Exp Ther. 2024 Jan 2;388(1):218-227. doi: 10.1124/jpet.123.001864.

Abstract

Although vancomycin (VCM)-frequently used to treat drug-resistant bacterial infections-often induces acute kidney injury (AKI), discontinuation of the drug is the only effective treatment; therefore, analysis of effective avoidance methods is urgently needed. Here, we report the differences in the induction of AKI by VCM in 1/2-nephrectomized mice depending on the time of administration. Despite the lack of difference in the accumulation of VCM in the kidney between the light (ZT2) and dark (ZT14) phases, the expression of AKI markers due to VCM was observed only in the ZT2 treatment. Genomic analysis of the kidney suggested that the time of administration was involved in VCM-induced changes in monocyte and macrophage activity, and VCM had time-dependent effects on renal macrophage abundance, ATP activity, and interleukin (IL)-1β expression. Furthermore, the depletion of macrophages with clodronate abolished the induction of IL-1β and AKI marker expression by VCM administration at ZT2. This study provides evidence of the need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced AKI as well as the potential for macrophage-targeted AKI therapy. SIGNIFICANCE STATEMENT: There is a time of administration at which vancomycin (VCM)-induced renal injury is more and less likely to occur, and macrophages are involved in this difference. Therefore, there is a need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced acute kidney injury as well as the potential for macrophage-targeted acute kidney injury therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury* / chemically induced
  • Acute Kidney Injury* / metabolism
  • Animals
  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology
  • Kidney
  • Macrophages
  • Mice
  • Vancomycin* / metabolism
  • Vancomycin* / pharmacology

Substances

  • Vancomycin
  • Anti-Bacterial Agents