Cascade Performance of Nitroarenes with Alcohols Boosted by a Hollow Flying Saucer-Shaped Ni-Al2O3 Catalyst via a MOF-Templated Strategy Induced by the Kirkendall Effect

Inorg Chem. 2023 Dec 25;62(51):21470-21478. doi: 10.1021/acs.inorgchem.3c03629. Epub 2023 Dec 4.

Abstract

Catalysts with an open hollow structure can enhance the mass transfer capability of the catalyst during the reaction process, thereby further improving the catalytic performance. In this work, uniform and monodisperse flying-squircher-shaped Al-MOFs were synthesized via a solvothermal method. Furthermore, a hollow structure Al2O3-supported metallic Ni catalyst (termed Ni-Al2O3-HFA) was synthesized via the Kirkendall effect for the hydrogenation-alkylation cascade reaction by employing as-synthesized Al-MOFs as a carrier for impregnation of Ni(NO3)2·6H2O through further calcination and reduction. Various characterizations (e.g., XRD, HADDF-STEM, H2-TPR) were conducted to reveal the superior performance of the developed Ni-Al2O3-HFA catalyst compared to Ni/Al2O3-IWI (Al2O3 obtained from calcination of Al-MOFs) in cascade reaction between nitroarenes and alcohols. We hope to use the MOF template method via the Kirkendall effect to prepare hollow structure nanocatalysts, which can provide a guideline for the preparation of other hollow materials.