Thermal bleaching in the northern South China Sea: impact of abnormal environment and climate on high-latitude coral reefs

Environ Sci Pollut Res Int. 2024 Jan;31(1):1576-1588. doi: 10.1007/s11356-023-31173-5. Epub 2023 Dec 4.

Abstract

Extensive coral bleaching events can result in catastrophic degradation of coral reefs and reorganization of coral communities. In the present study, we analyzed the spatial differences in coral bleaching and possible reasons of large-scale coral bleaching, based on the results of a survey carried out in the northern South China Sea in 2020. In addition, we have continuously monitored the sea surface temperature (SST) of the northernmost Weizhou Island for more than six years. The living coral cover at Weizhou Island (W), Xuwen Nature Reserve (X), and Haihua Island (H) was relatively high at 24.6% ± 4.8%, 12.1% ± 3.8%, and 8.1% ± 2.6%, respectively, whereas their bleaching rates were 9.7% ± 2.6%, 9.7% ± 3.3%, and 6.9% ± 2.1%, respectively. Among them, the living coral cover of W was significantly different from those of X and H, whereas the bleaching rate was not significantly different among the three areas. In all three areas, the massive and encrusting corals predominate and exhibit relatively high bleaching rates, with Porites lutea and Bernardpora stutchburyi being the dominant species. In addition, the temperature monitoring results of Weizhou Island for six consecutive years showed that the critical SST of coral bleaching was 31.5 ℃. The monitoring results also showed that the average SST of Weizhou Island was 32.1 ℃, exceeding 32 ℃ in July 2020 for up to 533 h. The longest continuous time when the SST exceeded 32 ℃ was 97 h. These findings indicated that the coral bleaching event that occurred in the Beibu Gulf during 2020 was a large-scale and high-temperature transient event that presented a relatively homogeneous threat to the coral communities. We inferred that this sudden heat stress event was caused by the enclosed tidal current in the Beibu Gulf, which prevented the southern upwelling from reaching the north, as well as by the inability of the SST to decrease without rainfall caused by typhoon cyclones. Our findings suggested that abnormal heat waves can result in coral bleaching at high latitudes and even coral reef degradation. Furthermore, our study provides a new perspective for investigating the self-recovery and reorganization of coral communities following accumulated coral bleaching.

Keywords: Abnormal high temperatures; Bleaching; Climatic changes; Coral community; High-latitude coral reefs.

MeSH terms

  • Animals
  • Anthozoa*
  • China
  • Climate
  • Coral Reefs*
  • Temperature