Role of biophysical stimulation in multimodal management of vertebral compression fractures

Comput Struct Biotechnol J. 2023 Nov 14:21:5650-5661. doi: 10.1016/j.csbj.2023.11.023. eCollection 2023.

Abstract

Raised life expectancy and aging of the general population are associated with an increased concern for fragility fractures due to factors such as osteoporosis, reduced bone density, and an higher risk of falls. Among these, the most frequent are vertebral compression fractures (VCF), which can be clinically occult. Once the diagnosis is made, generally thorough antero-posterior and lateral views of the affected spine at the radiographs, a comprehensive workup to assess the presence of a metabolic bone disease or secondary causes of osteoporosis and bone frailty is required. Treatment uses a multimodal management consisting of a combination of brace, pain management, bone metabolism evaluation, osteoporosis medication and has recently incorporated biophysical stimulation, a noninvasive technique that uses induced electric stimulation to improve bone recovery through the direct and indirect upregulation of bone morphogenic proteins, stimulating bone formation and remodeling. It contributes to the effectiveness of the therapy, promoting accelerated healing, supporting the reduction of bed rest and pain medications, improving patients' quality of life, and reducing the risk to undergo surgery in patients affected by VCFs. Therefore, the aim of this review is to outline the fundamental concepts of multimodal treatment for VCF, as well as the present function and significance of biophysical stimulation in the treatment of VCF patients.

Keywords: Biophysical stimulation; Capacitive-coupling; Fragility fractures; Vertebral compression fractures.

Publication types

  • Review