In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging

Photoacoustics. 2023 Nov 7:34:100569. doi: 10.1016/j.pacs.2023.100569. eCollection 2023 Dec.

Abstract

We present a rapid and high-resolution photoacoustic imaging method for evaluating the liver function reserve (LFR). To validate its accuracy, we establish alcoholic liver disease (ALD) models and employ dual-wavelength spectral unmixing to assess oxygen metabolism. An empirical mathematical model fits the photoacoustic signals, obtaining liver metabolism curve and LFR parameters. Liver oxygen metabolism significantly drops in ALD with the emergence of abnormal hepatic lobular structure. ICG half-life remarkably extends from 241 to 568 s in ALD. A significant decline in LFR occurs in terminal region compared to central region, indicated by a 106.9 s delay in ICG half-life, likely due to hepatic artery and vein damage causing hypoxia and inadequate nutrition. Reduced glutathione repairs LFR with a 43% improvement by reducing alcohol-induced oxidative damage. Scalable photoacoustic imaging shows immense potential for assessing LFR in alcoholic-related diseases, providing assistance to early detection and management of liver disease.

Keywords: Alcoholic liver disease; Dynamic contrast enhancement; Liver function reserve; Scalable photoacoustic imaging.