Begomovirus and DNA-satellites association with mosaic and leaf curl disease of Solanum nigrum and Physalis minima: the new hosts for chilli leaf curl virus

Virusdisease. 2023 Dec;34(4):504-513. doi: 10.1007/s13337-023-00850-x. Epub 2023 Nov 20.

Abstract

The numerous plants of Solanum nigrum L, and Physalis minima L, well-known weeds with medicinal properties in agriculture and horticulture crops exhibiting severe mosaic, enation and leaf curl symptoms, were collected from the Varanasi and Mirzapur districts of Uttar Pradesh, India. The begomovirus infection in S. nigrum and P. minima was validated by PCR using virus-specific primers. The whole genome of the represented isolate of S. nigrum (SN1), P. minima (PM1), and beta satellite was amplified, cloned and sequenced. The SDT analysis showed that the DNA-A of PM1 and SN1 isolate showed the highest nt identity of 87.4 to 99.1%, with several chilli leaf curl virus (ChiLCuV) isolates from India and Oman, respectively. The betasatellite sequence (PM1β) obtained from the PM1 isolate showed a very low identity of 83.1-84.5%. A demarcation threshold of 91% for betasatellite species delineation has led to identifying a new betasatellite in the PM1 sample. This unique betasatellite has been named "physalis minima leaf curl betasatellite," indicating its novelty with the plant. Whereas, betasatellite sequence (SN1β) obtained from the SN1 sample showed 86.8-91.2% nucleotide identity with ChiLCB isolates infecting several crops in Indian subcontinents. The RDP analysis of the viral genome and betasatellite of SN1 and PM1 isolates revealed recombination in substantial portions of their genetic makeup, which appeared to have originated from pre-existing begomoviruses known to infect diverse host species. The present research also highlights the potential role of these plants as significant reservoir hosts for ChiLCuV in chili plants.

Supplementary information: The online version contains supplementary material available at 10.1007/s13337-023-00850-x.

Keywords: PCR; Phylogeny; Physalis minima; Recombination; Solanum nigrum.