Inhibitory effects of the main metabolites of Apatinib on CYP450 isozymes in human and rat liver microsomes

Toxicol In Vitro. 2024 Mar:95:105739. doi: 10.1016/j.tiv.2023.105739. Epub 2023 Dec 1.

Abstract

Purpose: The inhibitory effect of Apatinib on cytochrome P450 (CYP450) enzymes has been studied. However, it is unknown whether the inhibition is related to the major metabolites, M1-1, M1-2 and M1-6.

Methods: A 5-in-1 cocktail system composed of CYP2B6/Cyp2b1, CYP2C9/Cyp2c11, CYP2E1/Cyp2e1, CYP2D6/Cyp2d1 and CYP3A/Cyp3a2 was used in this study. Firstly, the effects of APA and its main metabolites on the activities of HLMs, RLMs and recombinant isoforms were examined. The reaction mixture included HLMs, RLMs or recombinant isoforms (CYP3A4.1, CYP2D6.1, CYP2D6.10 or CYP2C9.1), analyte (APA, M1-1, M1-2 or M1-6), probe substrates. The reactions were pre-incubated for 5 min at 37 °C, followed by the addition of NAPDH to initiate the reactions, which continued for 40 min. Secondly, IC50 experiments were conducted to determine if the inhibitions were reversible. The reaction mixture of the "+ NADPH Group" included HLMs or RLMs, 0 to 100 of μM M1-1 or M1-2, probe substrates. The reactions were pre-incubated for 5 min at 37 °C, and then NAPDH was added to initiate reactions, which proceeded for 40 min. The reaction mixture of the "- NADPH Group" included HLMs or RLMs, probe substrates, NAPDH. The reactions were pre-incubated for 30 min at 37 °C, and then 0 to 100 μM of M1-1 or M1-2 was added to initiate the reactions, which proceeded for 40 min. Finally, the reversible inhibition of M1-1 and M1-2 on isozymes was determined. The reaction mixture included HLMs or RLMs, 0 to 10 μM of M1-1 or M1-2, probe substrates with concentrations ranging from 0.25Km to 2Km.

Results: Under the influence of M1-6, the activity of CYP2B6, 2C9, 2E1 and 3A4/5 was increased to 193.92%, 210.82%, 235.67% and 380.12% respectively; the activity of CYP2D6 was reduced to 92.61%. The inhibitory effects of M1-1 on CYP3A4/5 in HLMs and on Cyp2d1 in RLMs, as well as the effect of M1-2 on CYP3A in HLMs, were determined to be noncompetitive inhibition, with the Ki values equal to 1.340 μM, 1.151 μM and 1.829 μM, respectively. The inhibitory effect of M1-1 on CYP2B6 and CYP2D6 in HLMs, as well as the effect of M1-2 on CYP2C9 and CYP2D6 in HLMs, were determined to be competitive inhibition, with the Ki values equal to 12.280 μM, 2.046 μM, 0.560 μM and 4.377 μM, respectively. The inhibitory effects of M1-1 on CYP2C9 in HLMs and M1-2 on Cyp2d1 in RLMs were determined to be mixed-type, with the Ki values equal to 0.998 μM and 0.884 μM. The parameters could not be obtained due to the atypical kinetics of CYP2E1 in HLMs under the impact of M1-2.

Conclusions: M1-1 and M1-2 exhibited inhibition for several CYP450 isozymes, especially CYP2B6, 2C9, 2D6 and 3A4/5. This observation may uncover potential drug-drug interactions and provide valuable insights for the clinical application of APA.

Keywords: CYP450 enzymes; Inhibition; Metabolites of apatinib; The 5-in-1 cocktail system.

MeSH terms

  • Animals
  • Cytochrome P-450 CYP2B6 / metabolism
  • Cytochrome P-450 CYP2C9 / metabolism
  • Cytochrome P-450 CYP2D6 / metabolism
  • Cytochrome P-450 CYP2D6 / pharmacology
  • Cytochrome P-450 CYP2E1 / metabolism
  • Cytochrome P-450 CYP3A* / metabolism
  • Cytochrome P-450 Enzyme System / metabolism
  • Humans
  • Isoenzymes / metabolism
  • Microsomes, Liver* / metabolism
  • NADP / metabolism
  • Pyridines*
  • Rats

Substances

  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 CYP2D6
  • apatinib
  • Cytochrome P-450 CYP2E1
  • Isoenzymes
  • Cytochrome P-450 CYP2C9
  • Cytochrome P-450 CYP2B6
  • NADP
  • Cytochrome P-450 Enzyme System
  • Pyridines