Comparison of quantitative [11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system

Phys Med. 2024 Jan:117:103185. doi: 10.1016/j.ejmp.2023.103185. Epub 2023 Dec 2.

Abstract

PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.

Keywords: Cerebral blood flow; Dopamine transporter; PET quantification; Positron emission tomography.

MeSH terms

  • Brain* / diagnostic imaging
  • Corpus Striatum
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging / methods
  • Positron-Emission Tomography* / methods
  • Reproducibility of Results