Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics

ACS Nano. 2023 Dec 12;17(23):23223-23261. doi: 10.1021/acsnano.3c06019. Epub 2023 Dec 2.

Abstract

Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.

Keywords: Cancer diagnosis; Cancer therapy; Degradable polymer; Drug delivery carrier; NIR-II imaging; Nanosystems; Pt(IV) prodrug; Semiconducting polymer; Stimuli-responsive polymer.

Publication types

  • Review

MeSH terms

  • Drug Delivery Systems / methods
  • Humans
  • Neoplasms* / diagnostic imaging
  • Neoplasms* / drug therapy
  • Polymers / therapeutic use
  • Precision Medicine
  • Stimuli Responsive Polymers*
  • Tumor Microenvironment

Substances

  • Stimuli Responsive Polymers
  • Polymers