Maximizing plyometric training for adolescents: a meta-analysis of ground contact frequency and overall intervention time on jumping ability: a systematic review and meta-analysis

Sci Rep. 2023 Dec 1;13(1):21222. doi: 10.1038/s41598-023-48274-3.

Abstract

Plyometric training boosts adolescents' jumping ability, crucial for athletic success and health. However, the best total ground contact frequency (TGCF) and overall intervention time (OIT) for these exercises remain unclear. This meta-analysis aims to identify optimal TGCF and OIT in plyometric training for adolescents, focusing on countermovement jump (CMJ) and squat jump (SJ) outcomes. This systematic review encompassed five databases and included 38 studies with 50 randomized controlled experiments and 3347 participants. We used the Cochrane risk assessment tool for study quality and Review Manager 5.4 for data analysis. The current meta-analysis incorporated a total of 38 studies, comprising 50 sets of randomized controlled trials, to investigate the influence of different TGCFs and OITs on plyometric training. The Cochrane risk assessment tool indicated that all the included studies were classified as low risk. Various TGCFs in plyometric training positively affected CMJ and SJ heights in adolescents. The TGCF of less than 900 was ideal for enhancing CMJ, whereas more than 1400 was effective for SJ. The optimal OIT was 400-600 min, specifically, 500-600 min for CMJ and 400-500 min for SJ. Plyometric training improves jumping ability in adolescents. Lower ground contact frequency (< 900 contacts) enhances CMJ, while higher ground contact frequency (> 1400 contacts) is more effective for SJ. Optimal intervention time ranges from 400 to 600 min, with 500 to 600 min benefiting CMJ and 400 to 500 min improving SJ.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Adolescent
  • Athletic Performance*
  • Exercise
  • Humans
  • Muscle Strength
  • Plyometric Exercise*
  • Posture