Mitochondrial E3 ligase MARCH5 is a safeguard against DNA-PKcs-mediated immune signaling in mitochondria-damaged cells

Cell Death Dis. 2023 Dec 1;14(12):788. doi: 10.1038/s41419-023-06315-9.

Abstract

Mitochondrial dysfunction is important in various chronic degenerative disorders, and aberrant immune responses elicited by cytoplasmic mitochondrial DNA (mtDNA) may be related. Here, we developed mtDNA-targeted MTERF1-FokI and TFAM-FokI endonuclease systems to induce mitochondrial DNA double-strand breaks (mtDSBs). In these cells, the mtDNA copy number was significantly reduced upon mtDSB induction. Interestingly, in cGAS knockout cells, synthesis of interferon β1 and interferon-stimulated gene was increased upon mtDSB induction. We found that mtDSBs activated DNA-PKcs and HSPA8 in a VDAC1-dependent manner. Importantly, the mitochondrial E3 ligase MARCH5 bound active DNA-PKcs in cells with mtDSBs and reduced the type І interferon response through the degradation of DNA-PKcs. Likewise, mitochondrial damage caused by LPS treatment in RAW264.7 macrophage cells increased phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA in a DNA-PKcs-dependent manner. Accordingly, in March5 knockout macrophages, phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA were prolonged after LPS stimulation. Together, cytoplasmic mtDNA elicits a cellular immune response through DNA-PKcs, and mitochondrial MARCH5 may be a safeguard to prevent persistent inflammatory reactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA, Mitochondrial / genetics
  • DNA, Mitochondrial / metabolism
  • Humans
  • Interferons / metabolism
  • Lipopolysaccharides* / metabolism
  • Membrane Proteins / metabolism
  • Mitochondria / metabolism
  • RNA, Messenger / metabolism
  • Ubiquitin-Protein Ligases* / metabolism

Substances

  • Ubiquitin-Protein Ligases
  • Lipopolysaccharides
  • Membrane Proteins
  • DNA, Mitochondrial
  • Interferons
  • RNA, Messenger