Quantum Phases from Competing Van der Waals and Dipole-Dipole Interactions of Rydberg Atoms

Phys Rev Lett. 2023 Nov 17;131(20):203003. doi: 10.1103/PhysRevLett.131.203003.

Abstract

Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases. Their study is hard to realize with conventional quantum simulators. In this regard, Rydberg atoms provide an exception as their excited manifold of states have both density-density and exchange interactions whose strength and range can vary considerably. Focusing on one-dimensional systems, we leverage the Van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model. For the uniform chain, we can influence the boundaries between ordered phases and a Luttinger liquid phase. For the dimerized case, a new type of bond-order-density-wave phase is identified. This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.