Light field measurement of specular surfaces by multi-polarization and hybrid modulated illumination

Appl Opt. 2023 Oct 20;62(30):8060-8069. doi: 10.1364/AO.499319.

Abstract

Specular highlights present a challenge in light field microscopy imaging fields, leading to loss of target information and incorrect observation results. Existing highlight elimination methods suffer from computational complexity, false information and applicability. To address these issues, an adaptive multi-polarization illumination scheme is proposed to effectively eliminate highlight reflections and ensure uniform illumination without complex optical setup or mechanical rotation. Using a multi-polarized light source with hybrid modulated illumination, the system achieved combined multi-polarized illumination and physical elimination of specular highlights. This was achieved by exploiting the different light contributions at different polarization angles and by using optimal solution algorithms and precise electronic control. Experimental results show that the proposed adaptive illumination system can efficiently compute control parameters and precisely adjust the light source output in real time, resulting in a significant reduction of specular highlight pixels to less than 0.001% of the original image. In addition, the system ensures uniform illumination of the target area under different illumination configurations, further improving the overall image quality. This study presents a multi-polarization-based adaptive de-highlighting system with potential applications in miniaturization, biological imaging and materials analysis.