Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics

Nat Nanotechnol. 2024 Feb;19(2):173-180. doi: 10.1038/s41565-023-01539-4. Epub 2023 Nov 30.

Abstract

Precise control of the conductivity of layered ferroelectric semiconductors is required to make these materials suitable for advanced transistor, memory and logic circuits. Although proof-of-principle devices based on layered ferroelectrics have been demonstrated, it remains unclear how the polarization inversion induces conductivity changes. Therefore, function design and performance optimization remain cumbersome. Here we combine ab initio calculations with transport experiments to unveil the mechanism underlying the polarization-dependent conductivity in ferroelectric channel field-effect transistors. We find that the built-in electric field gives rise to an asymmetric conducting route formed by the hidden Stark effect and competes with the potential redistribution caused by the external field of the gate. Furthermore, leveraging our mechanistic findings, we control the conductivity threshold in α-In2Se3 ferroelectric channel field-effect transistors. We demonstrate logic-in-memory functionality through the implementation of electrically self-switchable primary (AND, OR) and composite (XOR, NOR, NAND) logic gates. Our work provides mechanistic insights into conductivity modulation in a broad class of layered ferroelectrics, providing foundations for their application in logic and memory electronics.