SIRT1, a target of miR-708-3p, alleviates fluoride-induced neuronal damage via remodeling mitochondrial network dynamics

J Adv Res. 2023 Nov 28:S2090-1232(23)00371-5. doi: 10.1016/j.jare.2023.11.032. Online ahead of print.

Abstract

Introduction: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride.

Objectives: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1.

Methods: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA.

Results: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics.

Conclusion: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.

Keywords: Fluoride; Mitochondrial network dynamics; Neuronal damage; SIRT1; miR-708-3p.